【系统名称】
概要设计说明书

XXXXXXXXXXXXX有限公司

XXXX年XX月XX日

版本修订历史
	版本号
	修订人
	审核人
	批准人
	生效日期
	备注

	　
	　
	　
	　
	　
	　

	　
	　
	　
	　
	　
	　

	　
	　
	　
	　
	　
	　


文档修改记录

	修改日期
	版本/状态
	作者
	修改章节
	修改描述

	20XX-XX-XX
	V1.0.0
	
	
	初版V1.0发布

	
	
	
	
	

	
	
	
	
	


目录

11 引言

1.1 编写目的
1
1.2 范围
1
1.2.1 涵盖内容
1
1.2.2 适用对象
1
1.3 定义
1
1.4 参考资料
2
2 总体设计
3
2.1 需求规定
3
2.2 运行环境
3
2.3 基本设计概念和处理流程
3
2.4 总体架构
4
2.5 功能需求与程序的关系
5
2.6 人工处理过程
5
2.7 尚未解决的问题
5
3 接口设计
5
3.1 用户接口
5
3.2 外部接口
6
3.3 内部接口
6
3.4 接口协议与数据格式
6
4 运行设计
7
4.1 运行模块组合
7
4.2 运行控制
7
4.3 运行时间
7
5 系统数据结构设计
8
5.1 逻辑结构设计要点
8
5.2 物理结构设计要点
8
5.3 数据结构与程序的关系
9
6 系统出错处理设计
10
6.1 出错信息
10
6.2 补救措施
10
6.3 错误反馈
11
6.4 系统维护设计
11
6.4.1维护类型
11
6.4.2 维护流程
11
6.4.3 维护工具
11
6.4.4 可维护性设计
12
6.5 安全保密设计
12
6.5.1 身份认证与授权
12
6.5.2 数据安全
12
6.5.3 系统安全
12
7 附录
13


1 引言

1.1 编写目的

示例：为支撑医疗健康领域 AI 模型高效研发与规模化落地，构建以云原生架构为基座的医疗健康大模型应用研发平台，整合多维度建模方式与全生命周期管理能力，提供 AI 空间管理、研发一体化、部署集群管理等七大核心支撑平台，实现模型研发、训练、部署、运维的全流程标准化与高效协同。

本文档明确平台的总体架构、模块划分、接口设计、数据设计等核心内容，为详细设计、开发实现、测试验证及运维部署提供统一技术依据，指导相关人员开展工作。

1.2 范围

说明：

待开发的软件系统的名称；

列出本项目的任务提出者、开发者、用户以及将运行该项软件的单位。

1.2.1 涵盖内容

平台包含 AI 空间管理平台、AI 研发一体化平台、AI 部署集群管理平台、AI 资产管理平台、AI 编排调度平台、AI 运维一体化平台、智能体开发平台七大核心子平台，覆盖模型研发全流程的环境管理、任务调度、资源管控、运维监控、智能体构建等能力。

1.2.2 适用对象
本文档适用于平台开发团队、测试团队、运维团队、项目管理团队及相关业务对接人员。
1.3 定义

列出本文件中用到的专门术语的定义和缩写词的原词组。示例：
	缩写
	全称
	说明

	AI
	Artificial Intelligence
	人工智能

	GPU
	Graphics Processing Unit
	图形处理器

	SDK
	Software Development Kit
	软件开发工具包

	API
	Application Programming Interface
	应用程序编程接口

	SFT
	Supervised Fine-Tuning
	监督微调

	DPO
	Direct Preference Optimization
	直接偏好优化

	PPO
	Proximal Policy Optimization
	近端策略优化

	CI/CD
	Continuous Integration/Continuous Deployment
	持续集成 / 持续部署


1.4 参考资料

列出要用到的参考资料，如：

本项目的经核准的计划任务书或合同、上级机关的批文；

属于本项目的其他已发表的文件；

本文件中各处引用的文件、资料，包括所要用到的软件开发标准。

列出这些文件的标题、文件编号、发表日期和出版单位，说明能够得到这些文件资料的来源。

示例：
《医疗健康大模型研发平台需求规格说明书》

主流 AI 框架技术文档（PyTorch、TensorFlow 等）

云原生架构设计规范

2 总体设计

2.1 需求规定

说明对本系统的主要的输入输出项目、处理的功能性能要求，详细的说明可参见《需求分析说明书》。

2.2 运行环境

简要地说明对本系统的运行环境（包括硬件环境和支持环境）的规定，详细说明参见《需求分析说明书》。

示例：
2.2.1 硬件环境

•计算资源：GPU 集群（支持分布式训练）、CPU 服务器；

•存储资源：分布式存储集群、本地存储；

•网络资源：高带宽网络，支持跨节点高速通信。

2.2.2 软件环境

操作系统：Linux（CentOS/Ubuntu）；

云原生组件：Kubernetes、Docker；

AI 框架：PyTorch、TensorFlow、LLaMA Factory 等；

数据库系统：MySQL、Redis、InfluxDB、MinIO；

中间件：RabbitMQ（消息队列）、Nginx（反向代理）。

2.3 基本设计概念和处理流程

说明本系统的基本设计概念和处理流程，尽量使用图表的形式。

2.3.1 模型研发流程

1.开发者通过 AI 空间管理平台创建工作台，配置开发环境；

2.在 AI 研发一体化平台选择研发模式，导入数据、搭建模型；

3.提交训练任务，编排调度平台分配 GPU/CPU 资源；

4.训练完成后，通过模型服务管理模块发布服务；

5.部署集群管理平台完成模型标准化部署，运维一体化平台监控运行状态。

2.3.2 智能体开发流程

1.在智能体开发平台创建租户空间，配置成员权限；

2.通过知识管理模块导入医疗知识库，完成召回测试；

3.利用智能体构建模块定义提示词、配置模型与服务；

4.集成工具管理模块的自定义工具或外部 API；

5.发布智能体应用，可通过应用市场共享或对外提供 API 服务。

2.3.3 性能设计

1.计算性能：支持千亿参数级模型分布式训练，单集群可承载千级并发任务；

2.响应速度：API 服务平均响应时间≤3 秒，日志查询、监控数据展示延迟≤1 秒；

3.扩展性：支持集群弹性扩缩容，可根据业务负载自动调整资源配置；

4.稳定性：服务可用性≥99.9%，支持故障转移与数据恢复。

流程图：

2.4 总体架构
用一览表及框图的形式说明本系统的系统元素（各层模块、子程序、公用程序等）的划分，扼要说明每个系统元素的标识符和功能，分层次地给出各元素之间的控制与被控制关系。

示例：
平台以云原生架构为统一基座，构建 “七层子平台 + 全流程协同” 的总体架构，各层职责与协同关系如下：

基座层：提供云原生基础设施支撑，含容器化部署、分布式存储、弹性计算等能力；

AI 空间管理平台：提供研发环境、工作台、模型服务发布等基础支撑；

AI 研发一体化平台：覆盖模型研发全流程，含多模式开发、训推一体、流水线管理等核心能力；

AI 部署集群管理平台：负责模型标准化部署、集群配置与状态监控；

AI 资产管理平台：实现模型、数据、镜像等资产的集中管理与版本控制；

AI 编排调度平台：提供资源调度、任务编排、AI 原生应用支撑能力；

AI 运维一体化平台：整合运维数据、工单管理、告警推送等运维功能；

智能体开发平台：支持医疗智能体可视化构建、知识管理、工具集成等能力。

各子平台通过标准化接口实现数据互通与流程协同，形成 “研发 - 训练 - 部署 - 运维 - 应用” 的闭环管理。

架构图：
2.5 功能需求与程序的关系

本条用一张如下的矩阵图说明各项功能需求的实现同各块程序的分配关系：

	
	程序1
	程序2
	．．．．．．
	程序m

	功能需求1
	√
	
	
	

	功能需求2
	
	√
	
	

	．．．．．．
	
	
	
	

	功能需求n
	
	√
	
	√


2.6 人工处理过程

说明在本软件系统的工作过程中不得不包含的人工处理过程（如果有的话）。

2.7 尚未解决的问题

说明在概要设计过程中尚未解决而设计者认为在系统完成之前必须解决的各个问题。

3 接口设计

3.1 用户接口

说明将向用户提供的命令和它们的语法结构，以及软件的回答信息。

用户接入接口：支持 Web、命令行、SDK 等多种接入方式。

3.2 外部接口

说明本系统同外界的所有接口的安排包括软件与硬件之间的接口、本系统与各支持软件之间的接口关系。

业务系统对接接口：RESTful API 形式，支持外部系统调用模型服务、查询服务状态；

第三方资源接入接口：兼容模型服务 API、工具 API、数据导入接口等；

3.3 内部接口

说明本系统之内的各个系统元素之间的接口的安排。

子平台间交互接口：用于子平台间资源查询、任务提交、数据同步等（如研发一体化平台向编排调度平台提交资源申请）；

模块间调用接口：同一子平台内各模块的功能调用（如 AI 空间管理平台的模型管理模块调用全周期管理模块记录信息）。

3.4 接口协议与数据格式

通信协议：HTTP/HTTPS、RPC、WebSocket（实时监控场景）；

数据交换格式：JSON、Protobuf（高性能场景）；

接口认证：API-Key 认证、Token 认证，支持普通 API-Key 与个人 API-Key 两种模式。
	接口名称
	功能描述
	协议
	数据格式
	调用方

	模型服务发布接口
	提交模型服务发布请求
	HTTP/HTTPS
	JSON
	研发一体化平台

	资源调度接口
	申请 / 释放计算资源
	RPC
	Protobuf
	各子平台

	模型调用接口
	外部系统调用模型服务
	HTTP/HTTPS
	JSON
	医疗业务系统

	日志查询接口
	查询任务运行日志
	HTTP/HTTPS
	JSON
	运维一体化平台


4 运行设计

4.1 运行模块组合

说明对系统施加不同的外界运行控制时所引起的各种不同的运行模块组合，说明每种运行所历经的内部模块和支持软件。

AI 空间管理平台

集成开发环境模块

功能：提供文件管理、Git 操作、代码编辑、依赖库管理等 IDE 核心能力，预安装基础 Python 库，支持自定义安装；

依赖：工作台管理模块、资源调度接口。

工作台管理模块

功能：支持工作台创建、审批、成员管理、资源配置，实现权限与成本管控；

关联模块：集成开发环境模块、模型管理发布模块。

模型管理发布模块

功能：模型信息记录、服务发布、日志查看、快速调试；

输出：可调用的模型服务 API。

4.2 运行控制

说明每一种外界的运行控制的方式方法和操作步骤。

4.3 运行时间

说明每种运行模块组合将占用各种资源的时间。

5 系统数据结构设计

5.1 逻辑结构设计要点

给出本系统内所使用的每个数据结构的名称、标识符以及它们之中每个数据项、记录、文卷和系的标识、定义、长度及它们之间的层次的或表格的相互关系。

5.2 物理结构设计要点

给出本系统内所使用的每个数据结构中的每个数据项的存储要求，访问方法、存取单位、存取的物理关系（索引、设备、存储区域）、设计考虑和保密条件。

示例：

	数据类型
	存储介质
	用途

	用户数据、配置数据
	关系型数据库（MySQL）
	结构化数据存储与查询

	模型文件、数据集
	分布式存储（MinIO）
	大文件存储与高并发访问

	日志数据、监控指标
	时序数据库（InfluxDB）、日志系统（ELK）
	时序数据存储与检索

	缓存数据
	缓存数据库（Redis）
	高频访问数据加速（如 Prompt、Embedding 结果）


	字段名
	类型
	说明

	model_id
	字符串
	模型唯一标识

	model_name
	字符串
	模型名称

	version
	字符串
	模型版本

	framework
	字符串
	训练框架

	train_data_source
	字符串
	训练数据来源

	parameters
	JSON
	最优参数配置

	status
	枚举
	模型状态（待部署 / 已部署 / 已淘汰）

	create_time
	时间戳
	创建时间

	creator
	字符串
	创建人


数据安全设计

存储加密：敏感数据采用信封加密、直接加密等方式，密钥通过 KMS 管理；

传输加密：采用 SSL/TLS 协议保障数据传输安全；

访问控制：基于角色的细粒度权限管控，数据访问需通过身份认证与权限校验；

数据备份：定期备份关键数据，支持数据恢复。
5.3 数据结构与程序的关系

说明各个数据结构与访问这些数据结构的各个程序之间的对应关系，可采用如下的矩阵图的形式：

	
	程序1
	程序2
	．．．．．．
	程序m

	数据结构1
	√
	
	
	

	数据结构2
	
	√
	
	

	．．．．．．
	
	
	
	

	数据结构n
	
	√
	
	√


6 系统出错处理设计

6.1 出错信息

用一览表的方式说明每种可能的出错或故障情况出现时，系统输出信息的形式、含意及处理方法。

	错误类型
	检测机制
	触发场景

	资源不足
	资源监控指标告警
	训练任务提交时 GPU/CPU 资源不足

	任务执行失败
	任务状态跟踪、日志分析
	模型训练报错、服务部署失败

	接口调用异常
	接口响应码检测、超时监控
	子平台间接口调用失败、外部 API 调用超时

	数据错误
	数据校验、血缘追踪
	训练数据格式错误、知识库导入失败


6.2 补救措施

说明故障出现后可能采取的变通措施，包括：

后备技术：说明准备采用的后备技术，当原始系统数据万一丢失时启用的副本的建立和启动的技术，例如周期性把磁盘信息记录到磁带上去就是对于磁盘媒体的一种后备技术；

降效技术：说明准备采用的后备技术，使用另一个效率稍低的系统或方法来求得所需结果的某些部分，例如一个自动系统的降效技术可以是手工操作和数据的人工记录；

恢复及再启动技术：说明将使用的恢复再启动技术，使软件从故障点恢复执行或使软件从头开始重新运行的方法。

示例：

1.资源不足：自动触发弹性扩缩容，或提示用户调整任务优先级、等待资源释放；

2.任务执行失败：支持任务重试、断点续跑，记录失败原因便于排查；

3.接口调用异常：实现超时重试、降级策略（如核心服务不可用时切换备用服务）；

4.数据错误：提供数据校验报告，支持数据修正后重新提交，基于血缘追踪定位错误源头。

6.3 错误反馈

用户层面：提供明确的错误提示（含错误码、原因说明、解决方案）；

系统层面：详细记录错误日志（含时间、位置、上下文），支持日志检索与分析；

告警推送：通过短信、邮件、平台通知等方式推送关键错误告警。

6.4 系统维护设计

说明为了系统维护的方便而在程序内部设计中作出的安排，包括在程序中专门安排用于系统的检查与维护的检测点和专用模块。

6.4.1维护类型

纠错维护：修复运行过程中发现的 BUG 与故障；

适应性维护：适配新的硬件环境、软件版本、业务需求；

完善性维护：优化系统性能、新增功能模块、提升用户体验。

6.4.2 维护流程

问题提交：通过工单系统提交维护需求，标注问题类型与优先级；

问题排查：运维团队通过日志管理系统、监控平台定位问题原因；

修复实施：开发团队修复问题，测试团队验证修复效果；

上线部署：通过标准化运维流程部署修复版本，记录维护日志。

6.4.3 维护工具
监控工具：全栈技术可观测平台、告警推送模块；

日志工具：一站式日志管理系统（日志采集、查询、分析）；

运维工具：AI 运维一体化平台（标准化运维操作、工单管理）；

版本管理：支持模型、代码、配置的版本追溯与回滚。

6.4.4 可维护性设计

模块化：组件解耦，便于单独维护与替换；

文档化：提供完整的设计文档、操作手册、接口文档；

可视化：运维数据、系统状态可视化展示，便于问题定位；

自动化：支持自动化运维、批量操作，提升维护效率。

6.5 安全保密设计

6.5.1 身份认证与授权

身份认证：支持多因素认证、AI 应用身份鉴权平台，实现全生命周期身份管理；

权限控制：基于租户、角色的细粒度权限管控，支持多租户资源隔离，按功能模块分配操作权限；

访问审计：记录所有用户的操作行为，支持操作轨迹追溯。

6.5.2 数据安全

敏感数据加密：用户密码、密钥等敏感数据加密存储，传输采用 SSL/TLS 加密；

数据访问控制：严格的访问权限校验，仅授权用户可访问相关数据；

数据脱敏：医疗相关敏感数据在非必要场景下进行脱敏处理。

6.5.3 系统安全

防攻击：实现 API 限流、防火墙防护、漏洞扫描，防止恶意攻击与滥用；

代码安全：代码审计、依赖库安全扫描，避免安全漏洞；

运维安全：运维操作需经过审批，支持应急运维流程（跳过审批），但需记录操作日志。

7 附录

